Step of Proof: fseg_select
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
fseg
select
:
1.
T
: Type
2.
l1
:
T
List
3.
l2
:
T
List
4. ||
l1
||
||
l2
||
5.
i
:
. (
i
< ||
l1
||)
(
l1
[
i
] =
l2
[((||
l2
|| - ||
l1
||)+
i
)])
L
:
T
List. (
l2
= (
L
@
l1
))
latex
by ((InstConcl [firstn(||
l2
|| - ||
l1
||;
l2
)])
CollapseTHENA (Auto'))
latex
C
1
:
C1:
l2
= (firstn(||
l2
|| - ||
l1
||;
l2
) @
l1
)
C
.
Definitions
firstn(
n
;
as
)
,
n
-
m
,
||
as
||
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
A
B
,
Type
,
type
List
,
,
as
@
bs
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
,
t
T
Lemmas
firstn
wf
,
append
wf
origin